1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
| #include <openssl/rsa.h> #include <openssl/pem.h> #include <openssl/bio.h> #include <openssl/rand.h> #include <openssl/err.h>
#ifdef _WIN32 #include <Windows.h> #else #include <unistd.h> #endif
#include <iostream> #include <string>
using namespace std;
void load_random_seed() { #ifdef _WIN32 HCRYPTPROV hProv; BYTE pbData[32]; DWORD dwDataLen = sizeof(pbData); if (CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { CryptGenRandom(hProv, dwDataLen, pbData); CryptReleaseContext(hProv, 0); } RAND_seed(pbData, dwDataLen); #else FILE* urand = fopen("/dev/urandom", "rb"); if (urand != NULL) { unsigned char buf[32]; size_t n = fread(buf, sizeof(buf), 1, urand); fclose(urand); if (n == 1) { RAND_seed(buf, sizeof(buf)); } } #endif }
void RSA_generate_pkcs1(const int keyLength, string& publicPem, string& privatePem) { RSA* keypair = RSA_generate_key(keyLength, RSA_F4, nullptr, nullptr);
BIO* bio_pubkey = BIO_new(BIO_s_mem()); PEM_write_bio_RSAPublicKey(bio_pubkey, keypair); char* pubkey_str; long pubkey_len = BIO_get_mem_data(bio_pubkey, &pubkey_str); publicPem = string(pubkey_str, pubkey_len);
BIO* bio_privkey = BIO_new(BIO_s_mem()); PEM_write_bio_RSAPrivateKey(bio_privkey, keypair, nullptr, nullptr, 0, nullptr, nullptr); char* privkey_str; long privkey_len = BIO_get_mem_data(bio_privkey, &privkey_str); privatePem = string(privkey_str, privkey_len);
RSA_free(keypair); BIO_free_all(bio_pubkey); BIO_free_all(bio_privkey); }
void RSA_generate_pkcs8(const int keyLength, string& publicPem, string& privatePem) { RSA* keypair = RSA_generate_key(keyLength, RSA_F4, nullptr, nullptr);
EVP_PKEY* pkey = EVP_PKEY_new(); EVP_PKEY_set1_RSA(pkey, keypair);
BIO* bio_pubkey = BIO_new(BIO_s_mem()); PEM_write_bio_PUBKEY(bio_pubkey, pkey); char* pubkey_str; long pubkey_len = BIO_get_mem_data(bio_pubkey, &pubkey_str); publicPem = string(pubkey_str, pubkey_len);
BIO* bio_privkey = BIO_new(BIO_s_mem()); PEM_write_bio_PKCS8PrivateKey(bio_privkey, pkey, nullptr, nullptr, 0, nullptr, nullptr); char* privkey_str; long privkey_len = BIO_get_mem_data(bio_privkey, &privkey_str); privatePem = string(privkey_str, privkey_len);
RSA_free(keypair); EVP_PKEY_free(pkey); BIO_free_all(bio_pubkey); BIO_free_all(bio_privkey); }
void print_openssl_error() { unsigned long err = ERR_get_error(); char err_msg[120]; ERR_error_string_n(err, err_msg, sizeof(err_msg)); printf("Error: %s\n", err_msg); }
RSA* load_public_key(const char* public_key_str) { RSA* rsa = NULL; BIO* bio = BIO_new_mem_buf(public_key_str, -1); if (bio != NULL) { rsa = PEM_read_bio_RSA_PUBKEY(bio, NULL, NULL, NULL); BIO_free(bio); if (rsa == NULL) { print_openssl_error(); } } else { print_openssl_error(); } return rsa; }
RSA* load_private_key(const char* private_key_str) { RSA* rsa = NULL; BIO* bio = BIO_new_mem_buf(private_key_str, -1); if (bio != NULL) { rsa = PEM_read_bio_RSAPrivateKey(bio, NULL, NULL, NULL); BIO_free(bio); if (rsa == NULL) { print_openssl_error(); } } else { print_openssl_error(); } return rsa; }
std::string rsaEncrypt(const std::string& plaintext, RSA* rsa) { std::string result; int rsaLen = RSA_size(rsa); char* rsaResult = new char[rsaLen]; int encryptSize = RSA_public_encrypt(plaintext.length(), (const unsigned char*)plaintext.c_str(), (unsigned char*)rsaResult, rsa, RSA_PKCS1_PADDING);
if (encryptSize == -1) { std::cerr << "Failed to encrypt data (Error code: " << ERR_get_error() << ")" << std::endl; delete[] rsaResult; return result; }
result.assign(rsaResult, encryptSize); delete[] rsaResult;
return result; }
std::string rsaDecrypt(const std::string& ciphertext, RSA* rsa) { std::string result; int rsaLen = RSA_size(rsa); char* rsaResult = new char[rsaLen]; int decryptSize = RSA_private_decrypt(ciphertext.length(), (const unsigned char*)ciphertext.c_str(), (unsigned char*)rsaResult, rsa, RSA_PKCS1_PADDING);
if (decryptSize == -1) { std::cerr << "Failed to decrypt data (Error code: " << ERR_get_error() << ")" << std::endl; delete[] rsaResult; return result; }
result.assign(rsaResult, decryptSize); delete[] rsaResult;
return result; }
int main() { OpenSSL_add_all_algorithms(); ERR_load_BIO_strings(); ERR_load_crypto_strings(); load_random_seed();
string publicPem; string privatePem;
RSA_generate_pkcs1(2048, publicPem, privatePem); std::cout << "PKCS#1 Public Key:" << std::endl << publicPem << std::endl; std::cout << "PKCS#1 Private Key:" << std::endl << privatePem << std::endl; RSA_generate_pkcs8(2048, publicPem, privatePem); std::cout << "PKCS#8 Public Key:" << std::endl << publicPem << std::endl; std::cout << "PKCS#8 Private Key:" << std::endl << privatePem << std::endl;
RSA* public_RSA = load_public_key(publicPem.c_str()); RSA* private_RSA = load_private_key(privatePem.c_str());
std::string plaintext = "Hello, world!"; std::string ciphertext = rsaEncrypt(plaintext, public_RSA); std::string decryptedText = rsaDecrypt(ciphertext, private_RSA);
std::cout << "Plaintext: " << plaintext << std::endl; std::cout << "Ciphertext: " << ciphertext << std::endl; std::cout << "Decrypted Text: " << decryptedText << std::endl;
return 0; }
|